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Abstract:  Motivated by methods used to evaluate erroneous data, we create a novel firm-year 
measure to estimate the level of error in financial statements. The measure, which has several 
conceptual and statistical advantages over available alternatives, assesses the extent to which features 
of the distribution of a firm’s financial statement numbers diverge from a theoretical distribution 
posited by Benford’s Law. Using numerical methods, we first demonstrate that errors in financial 
statement numbers increase the deviation from the theoretical distribution. We then corroborate this 
analysis using simulation analysis that reveals that the introduction of errors to reported revenue also 
increases the deviation. Next, we provide archival-empirical evidence that the measure captures 
financial statement data quality by showing that i) the measure is positively associated with 
commonly used accruals-based earnings management proxies, ii) firms just above the zero earnings 
benchmark have significantly higher deviation, and iii) the restated financial statements of misstating 
firms exhibit less divergence.  Lastly, we highlight an advantage of the measure by investigating a 
question in a context that prior measures, due to their design, could not: whether equity market 
participants immediately impound the implications of erroneous financial statements into prices. 
Using an event study, relative to low error firms, we show that firms with high financial statement 
errors lose 1% of their equity value upon information release. 
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1. Introduction 

 Financial statement data that is free of error—whether in the form of mistakes, biases, or 

manipulation—is crucial for well-functioning capital markets. Accurate financial reports enable 

efficient resource allocation and efficient contracting. Therefore, assessing the errors in financial 

statements is an important task for investors, analysts, auditors, regulators, and researchers. Prior 

literature has taken important steps in creating and validating methods to assess different 

constructs of errors in firm-level financial statement information, such as accruals quality or 

earnings quality. However, despite substantial progress in this area, available methods have 

significant deficiencies that limit their usefulness.  In this study, we build on a statistical method 

developed by researchers in a variety of disciplines to assess the level of error in data.  We 

construct a parsimonious, firm-year measure that can be applied by financial statement users to 

assess the level of error in financial statements which overcomes some of the concerns 

surrounding existing measures. We first provide intuition for the mathematical and statistical 

mechanics behind the measure and then proceed to validate it in several empirical contexts. To 

highlight an advantage of the measure over prior measures, we apply it in a setting to answer a 

question that prior measures, dues to the nature of their design, could not. Namely, using event 

study methodology, we examine whether equity market investors immediately impound the 

implications of financial statement errors into prices upon the release of financial statement 

information.   

Prior accounting literature outlines the limitations of current measures of financial 

statement errors, such as their correlation with underlying firm characteristics and their reliance on 

time-series, cross-sectional, or forward-looking data, to name a few (Dechow, Ge, and Schrand, 

2010; Owens, Wu, and Zimmerman, 2013). In parallel, literature in mathematics, statistics, and 

economics suggests that examining the distribution of the first or leading digits (e.g., the leading 

digit of the number 217.95 is 2) of the numbers contained in a dataset allows users to assess the 
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errors of the underlying data.  The theoretical foundation of prior research using this method is 

based, implicitly or explicitly, on the theorem proved by Hill (1995), which states that if 

distributions are selected at random and random samples of varying magnitudes are then taken 

from each of these distributions, the leading digits of the combined mixture distribution will 

converge to the logarithmic or Benford distribution, otherwise known as Benford’s Law.1 

Specifically, Benford’s Law states that the first digits of all numbers in an empirical dataset will 

appear with decreasing frequency (that is, 1 will appear as the first digit 30.1% of the time, 2 will 

appear 17.6% of the time, and so forth).  Methods based on the law have been used to detect errors 

in published scientific studies, questionable election data in Iran, suspicious macroeconomic data, 

accounts receivables errors, and tax returns misreporting. However, we are unaware of any attempt 

to apply it to the entire population of numbers contained in a firm’s annual financial statements in 

order to ascertain whether it can be used as a firm-year measure of the degree of errors in financial 

reporting.  

The intuition behind why empirical data follow Benford’s Law can be distilled into two 

mathematical facts. The first fact relies on a mathematical approach to determine the first digit of 

any number N, which is to take its base 10 log and find the fraction behind the integer (i.e., the 

remainder or mantissa). If the fraction is between 0 and 0.301, the original number N will start 

with one, if the fraction is between 0.301 and 0.477 (interval of .176 or 17.6%), the number N will 

start with 2, and so forth. Hence, the intervals between the fractions after the decimal point of the 

log number that determine its first digit are the same as the probabilities defined by Benford’s 

Law. The second fact is that if the probability distribution function of the log of the original 

number N is smooth and symmetric, the probability that a number will be in the interval between n 

and n+0.301, where n is any integer in this logarithmic  distribution, is 30.1%. Similarly, the 

                                                            
1 Distributions need to be non-truncated or uncensored in order to conform to Benford’s Law.  For example, a petty 
cash account with a reimbursement limit of $25 would not be expected to follow Benford’s Law.  



  3   
 

probability that a number will be in the intervals between n+0.301 and n+0.477 is 17.6%, and so 

forth.  Because distributions in nature tend to be smooth and symmetric due to variances of the 

central limit theorem, datasets tend to follow Benford’s Law (Pimbley, 2014).  In order for a 

distribution that generally follows Benford’s Law to diverge from the law, certain types of errors 

have to be introduced to the data in a way that makes the distribution of the base 10 log less 

smooth or less symmetric.  

The same intuition outlined above likely applies to financial statement data. The true 

(unobservable) realizations of all cash flows, both present and future, which the items in the 

financial statements are intended to represent, are determined by many interactions during and 

after a given period. Therefore, the financial statements line items are estimates of the realizations 

of cash flows from an unknown random distribution. Since the true realization of every item in the 

financial statement is likely to be created by a different distribution (for example, the distribution 

of cash flows from sales that occurred during the year is likely to be different than that of 

administrative costs), it is possible that the mixture distribution of the cash flows realization of 

these data will follow the criteria in Hill’s (1995) theorem, and therefore will be distributed 

according to Benford’s Law. Specifically, it is possible that the cash flows realization of revenue 

of a certain year, together with the cash flows realization of the payments to suppliers, employees, 

tax authorities, etc., follow Benford’s Law. However, since these realizations are unobservable in 

the reporting year, the preparers of the financial statements have to estimate them—a process 

which introduces error into the financial statements, whether in the form of mistakes, biases, or 

manipulation.2 

                                                            
2 For example, the preparer needs to estimate what the returns and rebates on sales will be, as well as sales bonuses, 
tax payments, and so forth.  If there is no error (intentional or otherwise) in the reported numbers, they should follow 
Benford’s Law. However, if these estimates contain certain type of errors, as the error increases, they will likely 
diverge further from Benford’s Law. 
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To provide intuition on the mathematical and statistical foundations of Benford’s Law, we 

first use numerical methods to demonstrate that introducing errors to line items in financial 

statements will increase the divergence of the financial statements from Benford’s Law. This 

occurs because introducing different size errors to different items in the financial statements make 

the distribution less smooth and less symmetric, which, as noted above, is a condition for a 

distribution to follow Benford’s Law.  

From this analysis, we construct our measure, the Financial Statement Divergence Score, 

or FSD Score for short, which is based on the mean absolute deviation statistic as applied to the 

distribution of the leading digits of the numbers in annual financial statement data. The FSD Score 

allows us to compare the empirical distribution of the leading digits of the numbers in a firm’s 

annual financial statements to that of the theoretical or expected distribution specified by 

Benford’s Law.  As detailed in the next section, the FSD Score overcomes many of the 

disadvantages of existing measures of accounting or earnings quality. For example, it does not 

require time series or cross-sectional data to estimate, does not require forward-looking 

information, does not require returns or price information and, by construction, is not likely to be 

correlated with firm-level characteristics or firms’ business models ex ante.3 

After providing theoretical intuition for the measure, we perform a simple simulation to 

show that introducing errors into actual financial statement data creates deviations from Benford’s 

Law. Since our numerical analysis suggests that deviations from the law should increase when 

errors to accounting numbers are introduced, we introduce errors for a typical firm in our sample 

                                                            
3 Our claim that there is not likely to be an ex ante relation with underlying firm characteristics or business models 
does not imply the absence of a spurious correlation ex post. For example, because firms with lower profitability may 
be more likely to manipulate their financial statements, our measure may be spuriously correlated with profitability 
despite our claim that it is not theoretically related to a firm’s profitability ex ante. Unfortunately, like any other 
measure that bears resemblance to an exogenous instrumental variable, this lack of correlation cannot be tested 
(Wooldridge, 2010).  
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by randomly manipulating its revenue.  In this simple simulation, we are able to demonstrate that 

the manipulation induces an increase in the FSD Score more than 87% of the time.  

We next assess whether the realized distribution of the first digits of firms’ financial 

statement numbers follows Benford’s Law. This is a critical step in our empirical inquiry as no 

study has examined whether annual financial statements are distributed according to Benford’s 

Law.  We show that, whether in aggregate, by year, by industry, or by firm-year, firms’ financial 

statements generally conform to Benford’s Law.  

 Once initial conformity is established, we continue by examining the relation between 

Benford’s Law and commonly-used measures of accruals-based earnings management, earnings 

manipulation, and real activities earnings management. We show that the FSD Score is 

significantly positively related with the Dechow-Dichev measure, the modified Jones model 

measure, and Beneish’s M Score, which is consistent with the FSD Score capturing some of the 

underlying forces measured by those tools. However, the FSD Score is unrelated to proxies for 

real activities earnings management, which is consistent with the claim that our measure is 

unrelated to firms’ underlying operating environment and economic performance. We also 

corroborate the preceding analysis by investigating the FSD Scores of firms reporting annual 

income near zero in the spirt of Burgstahler and Dichev (1997).  We find that firms just below 

zero have significantly lower FSD Scores than those just above zero where the latter set of firms 

are more likely to be managing their earnings.  

We next expand our validation of the FSD Score’s ability to reflect financial statement 

error by conducting an “experiment” to directly examine our conjecture.  Specifically, we identify 

a sample of firms that restated their financial statements and compare the FSD Score for the 

restated and unrestated numbers. Because of its similarity to a natural experiment, this test 

provides a novel empirical setting to examine the usefulness of the FSD Score since we compare 
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the same firm-year to itself, thus keeping all else equal (e.g., economic conditions, firm 

performance, etc.) except for the reported numbers. We show that the restated numbers have 

significantly lower divergence (lower FSD Score) from Benford’s Law as compared to the same 

firm-year’s unrestated numbers. These results provide strong evidence that divergence from 

Benford’s Law is a useful tool for detecting errors.  

We conclude by applying the measure to answer one out of presumably many important 

research questions in a setting for which its advantages over alternate measures allows us to gain 

new insights. Namely, we examine whether equity market participants immediately impound the 

implications of erroneous financial statements into prices at the time of information release. This 

question has been the subject of debate in the literature and significant disagreement has arisen 

among practitioners, regulators, and academics (e.g., Dechow and Skinner, 2000).  On the one 

hand, there is a stream of theoretical and empirical research that suggests that markets are efficient 

and should adjust for any observable error. On the other hand, there is another stream of research 

that claims that markets do not always take into account the properties of financial statements 

(e.g., Sloan, 1996).  Given its timeliness, non-reliance on cross-sectional or time-series data, and 

that it is not likely to be correlated with a firm’s performance or business model, the FSD Score is 

well suited to examine this question and setting in that it allows researchers to assess how the 

market reacts to erroneous financial statement data upon the release of the report. 

We find that buying (selling) a portfolio of the lowest (highest) quintile of FSD firms 

yields abnormal return of 0.3% (0.6%) in the 10 days following the earnings announcement. When 

we double sort the portfolios to quintiles first based on earnings surprise and then based on the 

FSD Score, we find that for the most negative (positive) earnings surprises, high FSD firms have 

1.3% (1.3%) lower abnormal returns than low FSD firms in the 10 days following the earnings 

announcement. This result is inconsistent with the argument that FSD returns are driven by the 
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drift of the earnings surprise. Lastly, we show that there are similar abnormal returns around the 

10-K release date, which is consistent with investor learning. However, we do not find any 

abnormal returns starting 10 days after the 10-K release date, suggesting that the market impounds 

information related to financial statement errors in a timely manner.   

The remainder of the paper proceeds as follows. Section 2 discusses the paper’s motivation 

and contribution. Section 3 describes the foundations of Benford’s Law. In Section 4, we detail 

how Benford’s Law can be used to detect errors in financial statements and form our predictions. 

In Section 5, we present our sample and descriptive statistics.  Finally, Section 6 presents our 

empirical findings prior to concluding in Section 7. 

2. Motivation and Contribution  

The level of errors in financial statement data has a first-order impact in capital markets 

(Bushman and Smith, 2003). Existing literature in accounting, finance, and economics has 

highlighted the importance of financial statements for efficient resource allocation, financial 

development, employment contracts, debt contracts, cost of capital, and efficiency of equity and 

debt market prices (e.g., Rajan and Zingales, 1998; Rajan and Zingales, 2003; La Porta, Lopez-

De-Silanes, Shleifer, and Vishny, 2000; Duffie and Lando, 2001; Francis, LaFond, Olsson, and 

Schipper, 2004; Francis, LaFond, Olsson, and Schipper, 2005). Prior research in accounting and 

finance has spent significant effort constructing and evaluating measures of accounting quality 

(e.g., Jones, 1991; Beneish, 1999; Dechow and Dichev, 2002).  

However, prior literature also outlines the limitations of existing measures (e.g., Dechow et 

al., 2010). We contribute to this literature by implementing a measure that overcomes many of 

these limitations. First, the FSD Score does not require time-series or cross-sectional data to 

estimate. It also does not model the error as a residual from a prediction model. Estimating 

residuals in time-series or cross-sectional models (such as the Jones model or Dechow and Dichev 
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(2002)) assumes that the estimated coefficients are identical over time or in the cross-section. 

Therefore, any unobserved change in those coefficients caused by underlying changes will also 

change the estimated financial statement error. This issue may create estimation error and lack of 

timelines. More importantly, these estimation techniques may bias inferences since the measures 

will inherently be correlated with the underlying economic reasons that caused the estimated 

model to deviate in the time-series or cross-section.  

Second, based on its theoretical derivation, the measure is unlikely to have an ex ante 

relation with underlying firm characteristics or business models since those characteristics or 

models do not theoretically cause firms to have financial statement items that start with 1, 2, or 

any other digit. For example, theoretically, a loss firm is as likely as a profitable firm to have a 

revenue realization that starts with 1. It may, however, be the case that loss firms are more likely 

to have errors—which is exactly what the measure aims to capture. If, on the other hand, a loss 

firm does not have errors, there will not be a deviation.  This aspect of the measure is a significant 

advantage in that, unlike accruals measures, a deviation is not caused by firm characteristics or 

business models.  That is, the levels or changes in operating performance are not expected to 

change the distribution of the first digits as long as financial statements reflect these changes or 

levels accurately. Correlations with firm characteristics or business models are a major limitation 

of the accruals-based models in that that they inherently depend on firm performance (Dechow et 

al., 2010; Owens et al., 2013).  

Third, the measure does not require forward-looking information. Using forward-looking 

information, such as future realizations of cash flows (e.g., the Dechow and Dichev (2002) 

model), reduces the usefulness of certain measures in settings where relying on such information 

is infeasible. For example, it is not possible to use these measures, as originally developed, for 

trading strategies or for timely identification of errors. While using lagged values of these 
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measures can give significant insights into certain questions (such as identifying risk factors), they 

cannot answer questions related to the information content of disclosures. Using these measures 

with perfect foresight is also a challenge because, in addition to facing look-ahead bias, if the 

realization of forward-looking information is correlated with current information, then their use 

may create bias in inferences.  

 Fourth, the measure does not require returns or price information. This requirement limits 

the usefulness of other measures and creates selection bias that may be acute in certain settings. 

Fifth, it does not require identifying managerial incentives to manipulate earnings like other 

measures (Beneish, 1999; Dechow and Skinner, 2000). Identifying managerial incentives ex ante 

to model errors limits the usefulness of these measures as they assume knowledge of the 

incentives. Fifth, certain measures, such as Beneish’s M-Score, are constructed as a linear 

combination of firm-level performance variables, such as gross margin and sales growth. While 

these measures are very useful in many settings, they are, by construction, correlated with firm 

performance, making it difficult to draw conclusions about errors that are separate from firm 

performance. Sixth, the measure is scale independent and thus fits to every currency or size. 

Seventh, it is available to essentially every firm with accounting information, even private 

companies where such information exists.  

 We do not claim to be the first researchers to use Benford’s Law as an error detection tool. 

The idea that Benford’s Law could be used to detect errors in economic data was first suggested 

by Varian (1972) with relation to economic forecasts.  More recently, Michalski and Stoltz (2013) 

showed that this method can be used to detect errors in macroeconomic data.  Carslaw (1988) used 

a variant of Benford’s Law to argue that firms in New Zealand whose earnings did not conform to 

the law were rounding up their earnings numbers. While Thomas (1989) showed similar results for 

U.S. firms, he further found that the relation inverts for loss firms by demonstrating a greater 
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(lower) than expected frequency of 9’s (0’s) for such firms.  Since Carslaw (1988) and Thomas 

(1989) are interested in showing that pooled earnings numbers are rounded to a round reference 

point, they focus strictly on the distribution of the second digit of the distribution of earnings and 

do not make firm-year inferences.4 The advancement in the use and development of Benford’s 

Law in accounting, and particularly in tax settings, can be found in inquiries by Mark Nigrini and 

his various coauthors.  His work has largely focused on internal transactional data from individual 

financial accounts and personal income tax return data.  For example, Nigrini (1996) uses 

Benford’s Law to examine items such as the interest received and interest paid on individual tax 

returns and finds a higher (lower) than expected frequency of 1’s (9’s) on interest received (paid). 

Nigrini and Miller (2009) provide a guide to auditors for how to use Benford’s Law to detect 

errors in transactional data and Nigrini (2012) demonstrates how Benford’s Law can be used to 

assess errors within the accounts receivables of a firm when one has access to invoice-level data. 

Relatedly, Durtschi, Hillison, and Pacini (2004) provide a practitioner’s guide for auditors on 

potential uses of Benford’s Law to uncover fraud in transactions from individual, internal financial 

accounts.   

In light of prior literature, we are unaware of any large-scale application of Benford’s Law 

to detect errors in the firm-year data found in external corporate financial reports.  The literature 

has largely restricted itself to the auditing of internal transactional data from individual accounts, 

tax returns, or deviations of one account across several firms (such as earnings per share).  Distinct 

from prior literature, we employ a measure of annual financial statement conformity to Benford’s 

Law on a firm-year basis for the composite distribution of the leading digits from all numbers 

contained in a firm’s annual financial statements. Our measure, therefore, is unique in its ability to 

                                                            
4 Strategic rounding has also been documented by Grundfest and Malenko (2009). 
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explore and answer questions distinct from prior literature.5 Importantly, unlike extant prior 

literature, which has relied largely on internal and private data, our measure can be created using 

solely publicly available information, making it available to anyone interested in analyzing the 

level of errors in firm-year financial data. 

We also contribute to the literature by examining whether equity market participants can 

detect and impound the implications of errors in the financial statements. For the market to detect 

errors, those errors need to be observable to the market at relatively low cost and market 

participants need to understand their implications. A short-window event study is a useful way to 

examine this question. However, available measures of the level of error in financial statements 

lack the timeliness, data availability, and are more likely to be correlated with firm performance. 

Using the newly developed measure, we can provide new evidence on this question and setting.   

3. Foundations of Benford’s Law  

3.1 Historical Background 

Benford’s Law is a mathematical property discovered in 1881 by astronomer Simon 

Newcomb, who noticed that the earlier pages in books of logarithms were more worn than the 

latter pages. He inferred from this observation that scientists looked up smaller digits more often 

than larger digits and determined that the probability that a number has a first digit, d, is: 

P(the first digit is d) = Log10(d+1) - Log10(d), where d = 1, 2, …, 9. 

This equation gives us the theoretical distribution of what is now commonly referred to as 

Benford’s Law, or the expected frequency of the first digits 1 through 9.  

 In 1938, physicist Frank Benford tested Newcomb’s discovery on a variety of datasets, 

including the surface areas of rivers, molecular weights, death rates, and the numbers contained in 
                                                            
5 Benford’s Law has also been employed in auditing software, such as ACL.  However, similar to prior research, its 
use has been limited to internal transactional data on a digit-by-digit (not distributional) basis.  To our knowledge, no 
commercial auditing software computes the conformity of the entire distribution of first digits, nor assesses firm-year 
conformity from external corporate financial reports. 
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an issue of Reader’s Digest, and found that the law held in each dataset (Benford, 1938). Some 

years later, Hill (1995) provided a formal derivation of Benford’s Law. Hill’s theorem states that if 

distributions are selected at random and random samples are then taken from each of these 

distributions, the significant digits of the combined mixture distribution will converge to the 

logarithmic or Benford distribution.  

 In order for a distribution to deviate from Benford’s Law, certain types of errors need to be 

introduced.  For example, evidence suggests that stock indices’ returns conform to Benford’s Law 

(Ley, 1996), which allows to compare the law with the empirical distribution of the first digits 

from the monthly returns of the Fairfield Sentry Fund, a fund-of-funds that invested solely with 

Bernie Madoff, during the 215 months in which it reported returns (Blodget, 2008):  

1 2 3 4 5 6 7 8 9 

0.396 0.142 0.104 0.071 0.075 0.066 0.061 0.066 0.019 

 

One would expect unaltered returns to conform to Benford’s Law, but this distribution differs 

significantly from the theoretical distribution, indicating that non-zero mean errors were added to 

the returns data. 

3.2 Measuring conformity and deviation from Benford’s Law 

 Measuring whether a dataset conforms to Benford’s Law has been the subject of some 

debate in the field of mathematics (Pike, 2008; Morrow, 2010). Test statistics can be strongly 

influenced by the pool of digits used, with some statistics requiring near-perfect adherence to the 

distribution as the pool becomes large (Nigrini, 2012). We employ two statistics when measuring 

conformity to Benford’s Law, the Kolmogorov-Smirnov (KS) statistic and the Mean Absolute 

Deviation (MAD) statistic. The KS statistic uses the maximum deviation from Benford’s 

distribution, determined by the cumulative difference between the empirical distribution of the 

digits from 1 to 9 and the theoretical distribution (see Appendix A for the distribution and 
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calculation methods). This statistic is useful for firm-level examinations of conformity to 

Benford’s distribution since there exists a critical value against which to test, that is, the critical 

value at the 5% level = 1.36/√P, where P is the total number, or pool, of digits used.6 

 The KS statistic becomes less useful as P increases, however.  In order to establish (fail to 

reject) the null hypothesis of distributional conformity at the 5% level, the statistic requires near 

perfect conformity of the underlying empirical distribution to Benford’s Law for large pools of 

digits (Nigrini, 2012). As a result, the KS statistic tends toward over-rejection as the pool of digits 

increases. The MAD statistic, on the other hand, does not take P into account. The MAD statistic 

is calculated as the sum of the absolute difference between the empirical frequency of each digit, 

from 1 to 9, and the theoretical frequency found in Benford’s Law, divided by the number of 

leading digits used. The scale invariance of the MAD statistic makes it useful when examining 

large pools of digits, as well as to compare financial statements across firms and through time, 

since the number of line items in an annual report can vary across industries and through time. 

Consequently, we use the FSD Score based on the KS statistic only in our descriptive tests when 

we examine the number of individual firm-years that conform to Benford’s distribution, that is, 

where we require a critical value to assess conformity. In all other tests throughout the paper, we 

rely exclusively on the FSD Score based on the MAD statistic to assess the shift in the empirical 

distribution.7  

3.3 Understanding the prevalence of Benford’s Law  

                                                            
6 An alternate method to examine conformity relies on the expected distribution of the first two digits (from 10 to 99) 
of a number (Nigrini, 2006).  We are unable to employ the first two digits in our setting since the pool of digits 
required to generate the distribution is 90 (instead of 9) buckets.  
7 While two other statistics were widely used in the early stages of the forensic accounting literature in this area, the 
Z-statistic and the Chi-square statistic, researchers have progressed to using the MAD statistic (Nigrini, 2012). The 
main deficiency of using the Z-statistic to examine Benford’s Law is that it examines conformity of only a single digit 
at a time, rather than the composite distribution of digits. The main deficiencies of using the Chi-square statistic is 
that, unlike the MAD statistic, it assumes observational independence and, similar to the KS statistic, is sensitive to 
the pool of digits used.  
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 There are two mathematical facts that explain the prevalence of Benford’s Law in 

empirical data. First, it can be shown that the mantissa (the fraction behind the decimal point of an 

integer) of the log 10 of a number is what determines the first digit of that number. If the mantissa 

is between log(d+1) to log(d), where d is an integer between 1 to 9, then the original number will 

start with d.  Second, since many distributions observed in nature, and all of those that are 

characterized by Hill’s theorem, are smooth and symmetric in the log scale because of the central 

limit theorem, the probability of being in a region between n+log (d+1) to n+log(d), where n is any 

integer in the logarithmic distribution, is exactly log(d+1)-log(d).  This is precisely the probability 

given by Benford’s Law. We detail this intuition in the following subsections.   

3.3.1 Determining the first digit of a number 

The first fact that mathematically explains the prevalence of Benford’s Law is that we can 

obtain the leftmost (or first) digit of a positive number by using the following algorithm (Smith, 

2007; Pimbley, 2014).  First, calculate the base 10 log of the number. For example, the base 10 log 

of 7823.22 is 3.893.  Second, isolate the mantissa, i.e., the part of the number to the right of the 

decimal point; in our example, it will be 0.893.  Third, raise 10 to the power of the mantissa found 

in the prior step; in our example, 100.893 is 7.81.  Fourth, the integer of the number found in the 

prior step is the first digit of the original number. In our case, the integer of 7.81 is 7, which is 

indeed the first digit of our original number 7823.22. 

This algorithm shows that what determines the first digit of a number is the remainder (or 

mantissa) of its base 10 log. More formally, any number N will start with the digit d (where d is 

between 1 to 9) if and only if the mantissa of log(N) is between log(d+1) and log(d).  This means 

that N will start with 1 if the mantissa of the log of N is between log(2)=0.301 and log(1)=0. The 

number N will start with 2 if the mantissa of the log of N is between log(3)=0.477 and 

log(2)=0.301, and so forth. The advantage of this algorithm is that it takes numbers with any 

length and isolates them to a length of only one digit.  Further, as this example shows, the 
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differences of log(d+1) – log(d) for digits 1 through 9, which determine the intervals between the 

first digits, are exactly the probabilities that a first digit will be d as defined by Benford’s Law, 

which leads us to the second mathematical fact.  

3.3.2 Probability distribution functions and the area under the curve: Uniform Distributions 

The second mathematical fact that empirically determines the prevalence of the first digit 1 

and the rarity of the first digit 9 is that the area under the curve of a probability density function 

(PDF) is the probability that a number drawn from this distribution will be in this range. To 

demonstrate the mechanics of this fact, it is convenient to examine the first digits on the log 10 

scale rather than the linear scale. Therefore, we initially consider a uniform distribution between 0 

and 6 on the log scale (which implies that the distribution ranges from 1 to 1 million on a linear 

scale). The PDF of this distribution is PDF(log(N)) = 1/6, and the graphical representation is: 

 
Figure 1 

 

The solid black bars in Figure 1 are the areas under the curve between every integer n in 

the distribution and n+log(2) = n+0.301. If N is a random number drawn from this distribution and 

falls in any of these areas, it will begin with the number 1 in the linear scale. The reason is that, 

according to the algorithm discussed in the previous section, any number that is between an 

integer n and n+0.301 in the log scale will start with 1 in the linear scale because its mantissa is 

between 0 and 0.301.  
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To obtain the probability that a number from this distribution (uniform in the log scale) 

will start with the digit 1 in the linear scale, we must find the area under the curve between n and 

n+log(2). We can obtain this by taking the integral of the PDF between n and n+log(2). Thus, the 

probability that a first digit, d, is 1 can be expressed as:   

1
6

	

 

 
=  1/6 * (0.301-0) + 1/6 * (1.301-1) + 1/6 * (2.301-2) + 1/6 * (3.301-3) + 1/6 * (4.301-4) + 
1/6 * (5.301-5)  
 
= 0.301 =  log(2) – log(1) 
 

The same rationale applies for every first digit d where d can equal 1 to 9.  That is, if N is 

distributed uniformly in the log scale, it will follow Benford’s Law because the probability of 

obtaining the first digit d is exactly log(d+1) – log(d), which is Benford’s Law. More formally, in 

the case of our uniform distribution: 

1
6

	

	

 

= log(d+1) – log(d) 

3.3.3 Probability distribution functions and the area under the curve: Normal Distributions 

While the uniform distribution is useful in explaining the intuition, it is not as useful when 

applying the intuition to empirical data. Two types of distributions arise naturally in many 

processes because of variations of the Central Limit Theorem, the normal and log-normal 

distributions. The intuition above applies in these cases as well. So long as these distributions are 

spread across a few orders of magnitudes in the log scale (e.g., range between 2 to 4 in the log-

scale, which means 100 to 10,000 in the linear scale), they will follow Benford’s Law.  
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To see this clearly, we need to examine a distribution that is distributed normally on the 

log scale, which means it is log normal in the linear scale (the distinction between natural log or 

base 10 log is not crucial here for the shape of the distribution). Consider a normal distribution 

with a mean of 5 and standard deviation of 1 in the log scale.  

PDF(Log(N), μ=5, σ=1) = 
2( 5)

2
1

2

x

e





 

 
 

 
Figure 2 

 

The shaded area in Figure 2 represents all the areas between any integer n to n+0.301. 

While it is not clear to the naked eye as it was in the case of the uniform distribution above, the 

area under the curve in all sections between n and n+0.301 is the probability of a number in a 

linear scale starting with 1.  Here, the probability that a first digit is 1 =  

2log(2) ( 5)

2

log(1)

1

2

n x

n n

e dN


  

 
   ≅		0.301 = log(2) – log(1) 

 
Similarly, we can find the probability of any digit for this normal distribution in the following 
way:  

2log( 1) ( 5)

2

log( )

1

2

n d x

n n d

e dN


   

 
   ≅		 log(d+1) – log(d) 

 

3.3.4 Probability distribution functions and the area under the curve: Generic Distributions 

More generally, for any given probability distribution function, the probability that a first 

digit begins with d  can be found by obtaining the area under the curve for the function specified.  
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log( 1)

log( )

(log( ))
n d

n n d

PDF N dN
 

 
    

For a given digit d, if the area under the curve is equal to log(d+1) – log(d), then the probability 

that the first digit for the numbers drawn from this distribution is d will follow Benford’s Law. 

Stated differently, if a distribution is smooth and symmetric in the log scale over several orders of 

magnitude, it will follow Benford’s Law (Smith, 2007; Pimbley, 2014). This happens because the 

area under the curve from n+log(d) to n+log(d+1) is equal to log(d+1) - log(d), which is equal to 

the probability that a first digit is d under Benford’s Law. Since many empirical distributions tend 

to be smooth and symmetric in the log scale, it is not surprising that first digits are empirically 

distributed following Benford’s Law. 

3.3.5 Mean absolute deviation and financial statement deviation 

It is not sufficient to examine only a single digit in isolation to detect deviation from 

Benford’s Law (Smith, 2007). A natural measure to examine the distance all leading digits are 

from Benford’s Law is the Mean Absolute Deviation (MAD), which takes the mean of the 

absolute value of the difference between the empirical frequency of each leading digit that appears 

in the distribution and the theoretical frequency specified by Benford’s Law. With this knowledge, 

we can mathematically construct our Financial Statement Deviation (FSD) Score based on the 

Mean Absolute Deviation (MAD) statistic:  

 

FSD Score = 

log( 1)9

1 log( )

[( (log( )) ) ( ( 1) ( ))]

9

n d

d n n d

ABS PDF N dN Log d Log d
 

  

    
 

 
The FSD Scores of the uniform and log-normal scale PDFs above are equal to zero. This 

occurs because, as shown above, since these distributions are smooth and symmetric, the 

probability that a number drawn from any of these distributions begins with a digit d is log(d+1)-
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log (d), which is exactly the probabilities given by Benford’s Law. Therefore, for each first digit d 

there is no deviation from Benford’s Law, which implies that the mean of the absolute deviation, 

as captured by the FSD Score, is equal zero.  

4. Detecting errors in financial reporting using Benford’s Law 

4.1 Motivating Intuition 

Since accounting data are a series of estimations of the true cash flows realizations of the 

underlying items (for example, cash flows from sales, cash flows from payments to employees, 

etc.), the resulting underlying distribution of the mixture of distributions of these cash flows 

realizations may fulfil the conditions of Hill’s theorem and follow Benford’s Law. In our example 

below, we show numerically that under certain assumptions, this is the case with accounting data. 

We also show that if the accounting estimates of the true cash flows realization are without error, 

the distribution of the accounting estimates (the financial statements) will follow Benford’s Law 

exactly. While we cannot prove or empirically show that that actual cash flow realizations of 

accounting data will follow Benford’s Law (as they are unobservable), we show that the actual 

estimates of these realizations (the accounting line items), which include errors and manipulations, 

follow Benford’s Law for the whole sample and for the typical firm, and these distributions in the 

log scale are symmetric and smooth (and near normal).  

 Using numerical methods, we then characterize the type of errors in accounting data that 

are likely to create deviations from Benford’s Law. We show that introducing a zero mean error or 

multiplying all numbers in the distribution by the same number will not create deviations from 

Benford’s Law. However, if we introduce errors with non-zero mean to the some of the underlying 

distributions in the mixture distribution (i.e., errors to some of the line items in the financial 

statements) or errors of different size to different items, then the larger the error, the larger is the 

deviation from Benford’s Law. For example, overestimating revenue, underestimating expenses, 

and/or meet-or-beat behavior are likely to introduce deviation from the law. The reason is that 
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introducing an error to the underlying distributions in the mixture creates asymmetries and lack of 

smoothness in the mixture distribution. This, in turn, creates measurable deviations from 

Benford’s Law.  

 To provide further intuition, we show in Appendix B that when we introduce errors into 

observable realizations of equity prices, they begin to deviate from Benford’s Law as the errors 

increase. The advantage of this simulation is that, unlike cash flows realizations, stock price 

realizations are observable, so we can compare the realized distribution to the distribution with 

error.  

4.2 A stylized numerical example 

In order to strengthen the intuition regarding the way Benford’s Law can be used to detect 

errors in accounting data, consider the following setting. A manager starts a project at year 1 that 

has a vector X with K {1,2,…K} different random cash flow streams Xk { X1, X2…. XK}. All cash 

flow streams will be realized in year 2 and are constructed to be positive (i.e., we take the absolute 

value of the cash flow streams). X1 is the random flow of cash from activity 1 (say, cash flow from 

revenue from activity 1), X2 is the random flow of cash from activity 2 (say, cash outflow for 

payment for suppliers), and Xk is the random inflow of cash from activity k. XK is the last cash 

flow stream.8 Assume that the K cash flows are all log-normal (base 10) distributed with mean µk 

and standard deviation of σk (in the log scale), which implies that log(Xk) is distributed normal (µk, 

σk ). For simplicity, we will assume all cash flows and error terms are uncorrelated with each other 

and we will modify this assumption later in our illustration.  

At the end of year 1, the manager needs to report financial statements that include his 

estimate of the cash flow stream X. This report could be the manager’s best estimate, could be 

strategically manipulated, or could be constrained by correct application of accounting methods; 

                                                            
8 The example can be constructed to include balance sheet and cash flows statement and include multiple periods.  
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we do not distinguish between these possibilities.  The report is a vector Y with K different 

estimates for each of the K cash flows. To make the calculation tractable, assume that Yk=Xk*Zk , 

where Z is a vector of the estimation errors for each of the Xk. If Zk=1, there is no error in the 

estimation. If Z k >1, there is over-estimation of the true Xk, and if Zk <1, there is under-estimation 

of Xk. The reason for the multiplicative error structure, rather than the more common additive 

error structure, is that we can now easily recast the example in log scale as log(Yk) = log(Xk) + 

log(Zk), i.e., there is an additive error in the log scale, which makes the problem more tractable. 

Since log(1) is zero, it is clear that if there is no error,  Zk =1, and log(Yk) = log(Xk).   

Since we showed above that normal distributions in the log scale follow Benford’s Law, 

adding an error term Zk that is distributed log normal with a mean µεk and standard deviation σεk  

does not create deviation from the law. The reason is that the convolution in the log scale of Y 

(i.e., the distribution of log(Xk) + log(Zk)) will be distributed normal (µk + µεk , σk + σεk ). This 

distribution will also follow Benford’s Law, even if there is a non-zero mean error (µεk  ≠ 0) or 

decreased precision (σεk  > 0). 

However, the example becomes more interesting when we look at the errors in the report in 

a specific year (i.e., when we look at the distribution of the cross-section of all the Xks in one 

year).  The reason is that, despite the fact that all Xks in a given year are distributed normally, the 

mixture distribution of the vector X for that year will not be normal unless their means are equal. 

The distribution of the vector X in the cross section is a mixture distribution, and its density 

function is given by the following formula: 

PDF (X) =  
1

* ,k k

K

k
W PDF X
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where Wk is the weight of each of the individual distributions that comprise the mixture 

distribution.  In our case, since the Xks are distributed normally in the log scale, the mixture 

distribution is given by the following expression: 

PDF (log(X)) =   

2

2

( )

2

1

1 1
( )

2

k

k

x
K

k k

e
K




 





  

  
The theoretical FSD Score of X (in the cross section) in this case is therefore: 

 

FSD Score = 

2

2

( )log( 1)9
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A mathematically interesting fact about the mixture of normal distributions is that when 

the means of the distributions are less than two standard deviations apart, the resulting distribution 

has a single peak, and it looks exactly like a normal distribution (Ray and Lindsay, 2005). 

Therefore, it will follow Benford’s Law. More importantly, Hill (1995) provides a proof that 

mixtures of distributions that do not contain error will follow Benford’s Law under certain 

conditions. However, there is no analytical or empirical way to show that these conditions are met 

in the context of financial accounting. We do, however, show that the distribution of Y in the log 

scale appears to be relatively smooth and symmetric (and looks similar to a normal distribution).  

Figure 3 plots the empirical density function of all numbers from all financial statements from 

2001-2011 in the log scale, which suggests that the underlying no-error distribution follows 

Benford’s Law as well. Figure 4 shows the distribution in the log scale for a typical firm, Alcoa in 

2011. 
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   Figure 3     Figure 4 

 

Solving for a general closed-form solution of how the FSD Score is changing with the 

error term Z is beyond the scope of this paper and therefore we leave this question for future 

analytical research. However, we now extend the analysis and use numerical parameters for 

specific cases to show the intuition of how FSD changes.  

4.3 A special numerical solution 

Assume there are 10 groups of cash flow streams (i.e., K =10, so we have X1 to X10 cash 

flow streams) and that each of the cash flow streams has a different mean in the log scale, starting 

from 4 to 4.9, separated by 0.1 (i.e., µ1 =4, µ2 =4.1.., µ10=4.9), which means the numbers range 

from 10,000 to 100,000 in the linear scale. Finally, assume that the standard deviation of each of 

the Xks in log scale is σk = 1.  

The probability density function of X, i.e., the mixture distribution in this year, is therefore 

the following: PDF (log(X)) = 
2( )10

2

1

1 1
( )

10 2

kx

k

e








 .  As can be seen in Figure 5, this distribution 

is smooth and symmetric and looks similar to a normal distribution: 

 



  24   
 

 
Figure 5 

 

Further, this distribution follows Benford’s Law, and the FSD Score for this distribution under 

those parameters is FSD Score = 0.  

The problem is that X is unobservable to an outsider (and may also be unobservable to the 

manager).  The outsider is observing only the Yks where Yk=Xk*Zk. The conclusions about the 

errors that outsiders can make must come from the distribution of the reported vector of numbers 

Y.9 If Zk is distributed log normal, which means it is distributed normal in the log scale with µεk  

and  σεk,  then each Yk is also distributed normal in the log scale with parameters µyk = µk + µεk and  

σyk = σk + σεk.   This is essentially the distribution of the sum of two normal variables. Now 

consider the following three cases.  

4.3.1 Error distributions with equal means and equal standard deviations (Case 1) 

In this case, µε1 = µε2 = … = µε10 = Constant C and σε1 = σε2 = … = σε10  = Constant S.   In 

this case µyk = µk + C and σyk = σk + S. The resulting mixture distribution of Y in the log scale will 

again look like the distribution of X but shifted to the right by a constant C and flatter because of 

the increased standard deviation, that is, PDF (log(Y)) =

2

2
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1 1
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 , 

which will follow Benford’s Law to a similar degree as the distribution of X. This is because 

multiplying a distribution that follows Benford’s Law in the linear scale by a constant creates a 

                                                            
9 Insider and outsiders do not need to know the means and standard deviations of the original distributions or the error 
term. They simply need to know that the distribution follows Benford’s Law.  
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distribution that follows Benford’s Law (Hill, 1995).  With parameters C = 0.5 and S = 0.01, the 

FSD Score of the resulting distribution is zero and its PDF is shown in Figure 6: 

 
Figure 6 

In conclusion, adding identical error terms to all the Xks does not create deviations from 

Benford’s Law.  

4.3.2 Error distributions with equal means but different standard deviations (Case 2) 

In this case µε1 = µε2 = … =  µε10 = Constant C and σεk varies across the ks.   Therefore, µyk = 

µk + C and σyk = σk + σεk. The resulting mixture distribution of Y in log scale will again look like 

the distribution of X but wider because of the increased standard deviation. Still, it will closely 

follow Benford’s Law. Here again the FSD Score is zero.  

4.3.3 Error distributions with different means but constant standard deviation (Case 3) 

In this case, µεk varies across the ks, σεk varies across the ks, and σε1 = σε2 = … = σε10  = 

Constant S.  This is the interesting case as it will create deviations from Benford’s Law. We 

consider three different subcases.   

4.3.3.1 Error in the estimation of a single element in the cash flow streams (Case 3A) 

We start with the simple case where we change only the µε10 to add error to X10, which is 

the highest number in our cash flow streams. We will start increasing µε10 by increments of 0.1. 

Therefore, µyk  will grow from 4.9 to 5 in the first iteration, to 5.1 in the next iteration, and so on.  

This situation could be an example of overestimating revenues. The graphical evidence on the way 

the mixture distribution changes and the resulting FSD Scores is striking for the case of S = 0.01. 

In the case of µε10 = 0.1 and S=0.01, the FSD Score is 0.008, and the resulting distribution is 
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shown in Figure 7.  In the case of µε10 = 0.5 and S=0.01, the FSD Score is 0.017, and the resulting 

distribution is shown in Figure 8. 

      
                     Figure 7                Figure 8 

 

As we increase the mean of the error, the distribution monotonically moves further away 

from Benford’s Law and reaches a limit.  This case is consistent with managing revenue upward 

(or overestimating revenue compared to the actual distribution) leading to deviations in Benford’s 

Law and an increase in the FSD Score.  

4.3.3.2 The case where the errors are correlated with each other (Case 3B) 

The case above represents an error in one element of the report. However, a feature of the 

accounting system is that an error in one element leads to errors in other elements as well. For 

example, if the manager overestimates revenue, he is also likely to overestimate cost of goods sold 

(in an amount less than revenue) to match the revenue and will overestimate the related tax 

payment (in an amount less than revenue). In the terms of our example, there will be a mean error 

in several of the Zks. For example, let us assume µε10 is increasing by increments of 0.1 as before 

but now µε5 = 0.5µε10 and µε1 = 0.1µε10. Again, it is clear from the shape of the graph and the 

change in FSD that this will cause a significant deviation from Benford’s Law. 

In the case of µε10 = 0.1, µε5 = 0.5µε10, µε1 = 0.1µε10, and S=0.01, the FSD Score is 0.009, 

and the resulting distribution is shown in Figure 9.  In the case of µε10 = 0.5, µε5 = 0.5µε10, µε1 = 

0.1µε10, and S=0.01, the FSD Score is 0.017, and the resulting distribution is shown in Figure 10. 
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                                 Figure 9                               Figure 10 
 

Once again, the point to make from this exercise is that deviation from Benford’s Law is 

monotonically increasing with the error and reaches a limit, even when the errors are correlated 

with each other.  

4.3.3.3 The case where the errors are correlated with the mean of the cash flow streams (Case 3C) 

It also possible that the estimation errors will be larger for items that are larger. In terms of 

our example, µεk is a function of µk.  For the sake of simplicity, assume µεk = µk * B, where B is a 

constant multiplier that determines the error size (the larger is B, the larger is the error).  It is clear 

that if B is zero, we revert to Case 1, and the distribution follows Benford’s Law exactly with FSD 

Score equal to 0. However, when we start increasing B by increments of 0.1 the distributions start 

to change. In the case of µεk = µk * B, B =1.1, and S=0.01, the FSD Score is 0.004, and the resulting 

distribution is shown in Figure 11.  In the case of µεk = µk * B,   B =1.5, and S=0.01, the FSD Score 

is 0.016, and the resulting distribution is shown in Figure 12. 

                                 
                          Figure 11                       Figure 12 
 

In this case, uneven errors across accounts create deviations from Benford’ Law that 

monotonically increase the FSD Score before reaching a limit.  

4.3.4 Summary of the insights from the numerical results 
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We have showed that, under certain parameters, the FSD Score (or the deviation from 

Benford’s Law) is increasing with the size of the error. However, not all errors create deviations 

from Benford’s Law; the error needs to be applied in different rates to different items in the 

distribution. That is, mean-zero errors will not create deviations from Benford’s Law and neither 

will an error that is constant across all items. In reality, it is unlikely that the errors will be 

identical in all line items in the financial statements. Our numerical analysis indicates that, for 

example, overestimating revenue by itself (Case 3A) or together with the associated cost of goods 

sold (Case 3B) will create deviations from Benford’s Law. Further, an error that is correlated with 

the size of the item (Case 3C) will create deviations in the financial statements.  

4.4 Simulation analysis  

To further demonstrate how errors could alter conformity to Benford’s Law, we ran a 

simple simulation that involved changing the value of a single line item in a firm’s income 

statement and calculated how that change affected the financial statements overall. Because we 

need a firm that is unlikely to have an already manipulated financial statement, we chose to 

manipulate sales for Alcoa’s 2011 financial statements, which is a firm that generally, but not 

perfectly, conforms to Benford’s Law. We chose to manipulate revenues since revenue is an item 

that managers may be tempted to change to mask poor performance and is interconnected with 

many other financial statement items.  As a result of the sales manipulation, a firm likely needs to 

adjust cost of goods sold and tax expense accordingly.  Therefore, consistent with Case 3B, we 

added three journal entries to the original numbers: 

1. Increase Accounts receivables   Increase Revenue 
2. Increase Cost of goods sold   decrease Inventory  
3. Increase Tax expense    Increase Tax Payable  
 

These three journal entries affect more than 30 line items in Alcoa’s financial reports (see 

Appendix C for further detail). We then re-measured the FSD Score based on the manipulation 
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and the changes the manipulation induced in the financial statements. The results of this 

simulation show that the random revenue manipulation increased the FSD Score 87% of the time. 

The evidence from the simple simulation suggests that revenue manipulation in firms that conform 

to Benford’s Law is likely to result in an increase in the deviation from Benford’s Law. These 

results support the implications of our numerical example in the prior section.  

5. Sample selection, variable measurement, and descriptive statistics 

5.1 Sample selection and variable measurement 

Our sample consists of all annual financial statement data from Compustat for the period 

2001-2011. For simplicity and objectivity, we use all Compustat variables that appear in the 

Balance Sheet, Income Statement, and Statement of Cash Flow to calculate the FSD Score.10 For 

variables reported with an absolute value of less than 1, we take the first non-zero digit.  We set 

missing variables to 0, as this process do not affect our calculations of the FSD Score, which 

requires only digits 1 through 9. We remove any firm-years from the sample where the total 

number of first digits used to calculate the FSD Score for a given firm-year is less than 100 in 

order to increase the power of the test statistics.11 We also remove firms with negative total assets. 

All non-indicator control variables in the total sample of 46,674 firm-years are then winsorized at 

the 1% and 99% levels to eliminate the influence of outliers. See Appendix D for further details, 

as well as for the definitions of the control variables. 

 As previously discussed, the primary measure we use throughout the paper to assess the 

conformity of the empirical distribution of annual financial statements to Benford’s theoretical 

distribution is the FSD Score based on the MAD statistic, as it is insensitive to the size of the pool 

                                                            
10 We do, however, exclude data items provided by Compustat that do not appear on firms’ financial statements, i.e., 
price data.  Further while we would prefer to use the Edgar 10-K filing itself to overcome possible Compustat 
shortcomings (e.g., missing variables, modified definitions, etc.), extracting the current year’s financial statements 
from a given 10-K presents technological obstacles that make automated extraction infeasible as well as susceptible to 
its own biases.   
11 Including firm-years with less than 100 first digits does not alter our results. 
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of first digits used (i.e., the number of financial statement line items). While the FSD Score based 

on the KS statistic also tests conformity to the law and, unlike the FSD Score based on the MAD 

statistic, has established critical values against which to test, it becomes unreliable as the pool of 

digits increases. We therefore only rely on the FSD Score based on the KS statistic when gauging 

the conformity of individual firm-years.   

We use several proxies for accruals-based earnings management, earnings manipulation, 

and real activities earnings management. For accruals-based earnings management, we calculate 

the five-year moving standard deviation of the Dechow-Dichev residual (STD_DD_RESID) from 

Dechow and Dichev (2002), as suggested by Kothari, Leone, and Wasley (2005), and the absolute 

value of the accruals quality residual (ABS_JONES_RESID) from the modified Jones model 

(Jones, 1991), as suggested by Francis et al. (2005). For earnings manipulation, we calculate the 

M Score following Beneish (1999) and create an indicator variable (MANIPULATOR) equal to 1 

if the M Score is greater than -1.78, indicating that a firm may be manipulating its earnings. For 

real activities earnings management, we calculate three measures of real activities, abnormal level 

of cash flows from operations (R_CFO), abnormal level of production costs (R_PROD), and 

abnormal level of discretionary expenses (R_DISX), as defined in Roychowdhury (2006) and 

following Cohen, Dey, and Lis  (2008).   

In terms of other variables of interest for our tests, RESTATED_NUMS is an indicator 

variable assigned to all firms that have both restated and originally reported numbers in a year 

available through Compustat and, for the sake of materiality, at least 10 restated variables 

available in that year.12 RESTATED_NUMS is equal to 1 if the reported numbers are restated and 

zero if the numbers are what was originally reported.  Returns data from CRSP is used to create 

our abnormal returns measures. ABN_RET_EARN is the 10-day market-adjusted abnormal return 

                                                            
12 Removing the materiality condition does not alter our inferences. 
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starting from the earnings release date. ABN_RET_10K is the 10-day market-adjusted abnormal 

return starting from the 10-K release date. ABN_RET_LONG is the market-adjusted abnormal 

return from 11 days after the 10-K release date to 90 days after the release date. 

5.2 Descriptive statistics 

 Table 1 provides descriptive statistics for the full sample of firms from 2001-2011. The 

FSD Score’s mean is 0.030 with a standard deviation of 0.009. Table 2 presents Spearman 

correlations above the diagonal and Pearson correlations below the diagonal. The Pearson 

correlations between the FSD Score and ABN_RET_EARN and ABN_RET_10K are -0.0248 and 

-0.0206, respectively, and both are significant at the 5% level. The relations are negative and 

significant at the 5% level (-0.0325 and -0.0238, respectively) with the Spearman calculations as 

well. We find positive correlations that are significant at the 5% level when examining the relation 

between the FSD Score and our measures of accounting quality as well. The Pearson correlations 

between FSD Score and ABS_JONES_RESID, STD_DD_RESID, and MANIPULATOR are 

0.0726, 0.1486, and 0.0638, respectively. The Spearman correlations are similar, with significant 

(at the 5% level) correlations of 0.0701, 0.1083, and 0.0521 for the above relations. In untabulated 

results, autocorrelations between the contemporaneous FSD Score and prior year’s FSD Score is 

0.26 for the Pearson correlation and 0.23 for the Spearman correlation. These correlations are 

significant but also suggest that the measure is not too sticky over time.  

6. Methodology and empirical results 

6.1 Investigating the distribution of first digits in financial reports 

Table 3 shows how the aggregate empirical distribution of numbers reported in financial 

statements conforms to Benford’s Law. That is, the FSD Score is calculated by measuring the 

frequencies of the first digits from all firm-years in the sample. In the aggregate, the FSD Score is 

0.0014, well below 0.006, which can be considered close conformity to the law in very large 
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samples (Nigrini, 2012).13 This result can also be seen graphically in Figure 13 in Appendix E.  

Panels B and C of Table 3 show similar results when examining aggregate financial results by 

industry based on the Fama-French 17-industry classification and by fiscal year. This table 

supports the conjecture that the empirical distribution of the frequency of first digits in aggregate 

financial results conforms to Benford’s Law. 

Table 4 examines individual firm-year conformity to Benford’s Law.  Here, we must use 

the FSD Score based on the KS statistic because it enables us to assess whether the financial 

statements for a given firm-year adhere to the law. Of the 46,674 firm-years in our sample, 38,983, 

or 84%, conform to the law at the 5% level or better, as shown in Panel A.14  Figure 14 in 

Appendix E provides examples of the empirical distributions for two firm-years, one that 

conforms to Benford’s distribution at the 5% level (AT&T, 2003) and one that does not conform 

(Sprint Nextel, 2001).  While there are some kinks in AT&T’s distribution, the overall divergence 

from Benford’s distribution is visually apparent for Sprint Nextel, which experienced a 

restatement for, amongst other things, understating interest expense.  Panel B of Table 4 shows 

similar results when firms are sorted by industry, with a minimum conformity of 79% of all firms 

in a given industry and a maximum conformity of 87%. Panel C shows similar results when firms 

are sorted by fiscal year, with all years exhibiting between 82% and 85% conformity. This table 

supports our conjecture that a significant majority of firm-year empirical distributions conform to 

Benford’s Law. These results further imply that the pre-errors financial statements follow 

Benford’s Law because, if most financial statements follow Benford’s Law after-errors, it is likely 

that firms follow Benford’s Law before errors were introduced.  

                                                            
13 As noted previously, unlike the FSD Score based on the KS statistic, the FSD Score based on the MAD statistic has 
no critical value against which to test. However, based on simulation analysis, Nigrini (2012) suggests, when using the 
MAD statistic, a value of 0.006 or lower can be considered as close conformity to Benford’s Law.  
14 While we do not claim that all 16% of the firms that deviate from Benford’s Law engage in material misreporting, 
this estimate is consistent with Dyck, Morse, and Zingales (2013), who report that the probability of a firm 
committing fraud is 14.5% a year.  
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6.2 Benford’s Law and existing measures of accounting quality 

 To understand what types of firm behavior are associated with the FSD Score, we examine 

the relation between it and known measures of accounting errors. Table 5 examines the relation 

between the FSD Score and proxies for accruals-based earnings management, earnings 

manipulation, and real activities earnings management. The FSD Score is significantly positively 

associated with two commonly used measures of accruals-based earnings management, 

ABS_JONES_RESID and STD_DD_RESID. The coefficients on these variables are 0.001 

(significant at the 5% level) and 0.006 (significant at the 1% level), respectively. The coefficient 

on MANIPULATOR, our indicator that signals firms may be manipulating their earnings, is 0.001 

and significant at the 1% level. Finally, the coefficients on our three measures of real activities 

earnings management – abnormal levels of cash flow from operations (R_CFO), abnormal levels 

of production costs (R_PROD), and abnormal levels of discretionary expenses (R_DISX) – are all 

insignificant. These results suggest that the FSD Score is more likely to be associated with 

accruals-based earnings management than real activities that change the actual cash flow 

realizations and the accounting numbers accordingly. These results also provide support for our 

claim that the FSD Score is not likely to be correlated with firm operating performance.   

6.3 Benford’s Law and earnings management around zero  

 To understand whether Benford’s Law captures firms that manipulate their accounting 

results, in Table 6 we examine the difference in the FSD Scores for firms that are just above and 

just below the zero-earnings threshold. Burgstahler and Dichev (1997) find inconsistencies in the 

distribution of net income for firms that are around this threshold, with fewer firms just below zero 

than expected and more firms just above zero, suggesting that earnings management is used to 

avoid reporting losses. Following Burgstahler and Dichev (1997), we scale net income by the 

beginning-of-year market value of equity for all firms. We then divide firms into scaled net 
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income bins of 0.005.15 As compared to the firms just below zero, we find 38 percent more firms 

in the bin just above zero, and that these firms have FSD Scores that are, on average, 4.5 percent 

higher as well.  This difference is statistically significant at the 1% level, which suggests that firms 

that are more likely to have manipulated their earnings have greater divergence from Benford’s 

Law.16 

6.4 Misstated versus restated financial statements 

 We have established that the empirical distributions of most firms’ financial results 

conform to Benford’s Law, revenue manipulations tend to increase the divergence from Benford’s 

Law, and the FSD score is related to earnings management. When firms restate their financial 

results, the empirical distribution of the restated results should more closely conform to Benford’s 

Law than the misstated results. To test this prediction, we investigate a sample of firms that have 

restated their financial results and compare the FSD Scores of the misstated financial results with 

those of the restated results. Consequently, we expect that the FSD Score will decrease, or more 

closely conform to Benford’s Law, for the restated results. 

 To conduct our test, we examine firm-years in Compustat from 2001-2011 where both 

misstated and restated financial results are available (in Compustat, datafmt=STD for original and 

datafmt=SUMM_STD for restated). To increase the materiality of the restatement, we require that 

at least 10 variables change between the unrestated and restated numbers. We then create an 

indicator variable, RESTATED_NUMS, which is equal to 1 for results that have been restated and 

0 for the originally reported results. We regress this indicator variable on the FSD Score and 

include several variables to control for accruals-based earnings management, earnings 

                                                            
15 We conduct similar analysis using bins of size 0.001 and 0.0025 and find similar results. 
16 We corroborate the preceding analysis by examining the relation between the FSD Score and earnings persistence. 
Richardson, Sloan, Soliman, and Tuna (2005) show that current earnings are less informative about future earnings for 
firms with low accounting quality. Consistent with the FSD Score capturing accounting quality, in untabulated results, 
we find that the interaction between contemporaneous net income and the FSD Score is significantly negatively 
related to one-year-ahead net income, suggesting that firms with greater divergence from Benford’s Law have lower 
earnings persistence. 
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manipulation, and real activities earnings management.  Since the regression compares the firm to 

itself, we do not include additional firm control variables in this specification. 

Table 7 presents the results of our test of our prediction that the conformity of firms’ 

annual financial reports to Benford’s Law is lower for misstated versus restated results in the same 

firm-year. Consistent with this prediction, the coefficient on RESTATED_NUMS in Column (1) 

is -0.001, which is statistically significant at the 1% level. To ensure that our measure of 

conformity to Benford’s Law isn’t merely a proxy for existing measures of accounting discretion, 

in Column (2) we control for accruals-based earnings management, earnings manipulation, and 

real activities earnings management. When adding these additional measures, we find similar 

results, with the coefficient on RESTATED_NUMS equal to -0.001 and significant at the 1% 

level. Consequently, for the sample of firms that have both original and restated financial results 

available through Compustat from 2001-2011, the FSD Score is lower for the restated results, 

which implies that the empirical distribution of restated financials more closely conforms to 

Benford’s Law.  In terms of economic significance, a 0.001 decrease in the FSD Score represents 

a 3.5% reduction in the mean value of the FSD Score.  As our result is incremental to standard 

accounting quality proxies, this result also implies that our measure, while somewhat correlated 

with these proxies, is distinct from it.  Consequently, our measure of conformity may be useful in 

augmenting existing accounting quality models.17   

6.5 Event study examining equity market returns of portfolios based on the FSD Score 

                                                            
17 We chose not to tabulate and discuss results from a prediction model of SEC Accounting and Auditing Enforcement 
Releases (AAER) due to research design issues. In brief, the issues, identified at length by prior literature (see, for 
example, Dechow et a. (2011)), include, but are not limited to:  i) the existence of firms that manipulate but do not get 
caught, ii) the inability to model the SEC decision to issue AAERs to certain firms and not others, iii) statute of 
limitation laws that prevent us from identifying when the manipulation began, and iv) problems with the dataset 
(Karpoff, Koester, Lee, and Martin, 2014). While we plan to address these challenges in a future study, we do find 
that the lagged FSD Score and change in FSD Score from year t-1 to t are predictive of AAERs.  



  36   
 

Table 8 provides results on the relation between firms’ level of conformity to Benford’s 

Law and equity market returns. Portfolio returns are based on the Fama-Macbeth method, i.e., we 

construct portfolios every year and report the mean of these portfolios.   

In Panel A, we classify firms into quintiles based on their FSD Scores corresponding to the 

annual earnings release date. We find that in the 10 days following the annual earnings 

announcement date, the abnormal return of buying the lowest FSD Score quintile of firms is 

0.33%, while the abnormal return of shorting the highest FSD Score quintile of firms is 0.62%. 

This trading strategy yields abnormal returns of 1.0% in 10 days.18  This result suggests that the 

market punishes firms with high probability of erroneous data and rewards firms with low 

probability.  

In Panel B we take into account the possibility that the FSD Score is correlated with the 

earnings surprise. To deal with this concern, we first sort the data into five portfolios based on 

unexpected earnings (UE) defined as the difference between actual earnings per share and the 

mean of each analyst’s latest forecasts taken from the IBES Detail dataset, scaled by price. We 

then sort each of these portfolios into five portfolios based on the FSD Score. We find that, within 

the lowest quintile of earnings surprise, buying the lowest FSD Score quintile of firms and 

shorting the highest FSD Score quintile of firms in the 10 days around the earnings announcement 

yields a return of 1.3%. The results also show that within the quintile of highest earnings surprises, 

buying the lowest FSD Score quintile of firms and shorting the highest FSD Score quintile of 

firms in the 10 days around the earnings announcement yields 1.3% return.  Taken together, the 

                                                            
18 There are two concerns with this classification scheme. First, it may be that some firms do not provide all financial 
statements at the earnings release date. In this case, our classification will also suffer from look-ahead bias. While 
evidence suggests that this is not the case for many firms, in our tests, we provide similar evidence using the 10-K 
release date, as opposed to the earnings release date. Second, in order to classify firms, we need to know where they 
rank in the distribution of FSD compared to other firms-years. Technically, for this classification we need for all firms 
to report before classification. Practically, however, since the thresholds of classifying firms into quintiles based on 
the FSD Score do not vary significantly over the years, this is not a significant issue. Nevertheless, when we use prior 
distributions to determine whether the current year’s FSD Score is high or low, the results are unchanged.  
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results from Panels A and B suggest that the market punishes firms with higher probability of 

error, regardless of whether they disclose good news or bad news. These results also reduce the 

possibility that our measure captures post-earnings announcement drift. 

In Panel C, we repeat the analysis in Panel A, but here abnormal returns are formed from 

the 10-K release date to 10 days after that date.  We show that in the 10 days following the 10-K 

release date, the abnormal return of buying the lowest quintile of FSD Score firms is 0.19% while 

the abnormal return of shorting the highest FSD Score firm is 0.49%. This trading strategy can 

yield 0.68% of abnormal returns in 10 days.  This result suggests that the market learns additional 

information beyond the annual earnings announcement about the probability of errors in the 

financial statements from the 10-K disclosure. 

 In Panel D we show that, starting 10 days after the 10-K release date, significant abnormal 

returns based on FSD Score quintiles disappear (0.53% for 80 days).  This suggests that the 

market impounds all information in the days following the information release.  Given the lack of 

persistence in returns, this result also suggests that the FSD Score is unlikely to be correlated with 

risk factors.  

Lastly, in Panel E we show using multivariate analysis that the FSD Score is correlated 

with earnings announcement returns incremental to available accounting quality measures. 

Column (1) presents the results with no control variables. The coefficient on FSD is -0.412 and is 

significant at the 1% level. Column (2) presents the results after controlling for the earnings 

surprise, available measures of financial statement errors, and firm performance measures. The 

coefficient on FSD is -0.286 and is significant at the 1% level. The negligible reduction in the 

coefficient size and statistical significance suggest that the measure has incremental explanatory 

power over available measures of financial statement errors.  
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The results from Table 8 collectively suggest that market participants punish (reward) 

firms with high (low) probability of errors in their financial statements. The market reacts on a 

timely basis, with most of the abnormal returns concentrated around information release dates.19 

The results provide evidence of the ability of market participants to detect financial statement 

errors and price protect against their implications.   

7. Summary and conclusion 

 Building on a method used in a variety of disciplines, we propose that firm stakeholders 

may find a firm-year measure of financial reporting errors to be a useful tool to augment existing 

techniques to assess accounting data quality.  Our measure relies on the divergence from 

Benford’s Law, which states that the first digits of all numbers in a dataset containing numbers of 

varying magnitude will follow a particular theoretical and mathematically derived distribution 

where the leading digits 1 through 9 appear with decreasing frequency. This measure has 

significant advantages over other measures of accounting quality that are currently used in the 

literature.  For example, it does not require time series, cross-sectional, or forward-looking 

information, is available for essentially every firm with accounting information, and is 

uncorrelated ex ante with firms’ operating performance and business models.   

Based on Hill’s theorem, we construct several scenarios using numerical methods which 

reveal that financial statements without error are distributed according to Benford’s Law and, the 

larger the error, the larger the deviation from the Benford’s Law. To corroborate the results from 

the numerical analysis, we provide a simple simulation to demonstrate that when accounting 

                                                            
19 The seemingly efficient market reaction to financial statements errors begs the question, why do firms have errors in 
the first place? While we do not take a position on this question, we suggest a few possible answers. First, the errors 
may be accidental. Second, firms may attempt to bias or manipulate financial statements to deceive parties that are not 
as efficient as equity markets (such as regulators, auditors, compensation committees, etc.). Third, certain parties, such 
as debt holders, may expect managers to manage their financial statements. Therefore, managers have to manipulate 
their financial statement because these manipulations are already taken into account by these parties (for this signal 
jamming model we refer the reader to Stein (1989)). 
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numbers are manipulated, there is a high likelihood of an increase in the divergence from 

Benford’s Law.  

To ascertain whether the law applies to actual financial statement data, we show that at the 

aggregate level, financial statement numbers conform to Benford’s Law in all industries and years. 

When assessing the conformity of individual firm-years, we find that roughly 84% of firm-years 

conform to the law as well.  Next, we find that proxies for accruals-based earnings management 

and earnings manipulation are related to divergence from Benford’s Law while proxies for real 

activities earnings management are not.  We corroborate this analysis by finding that firms more 

likely to manage their earnings have significantly lower FSD Scores.  We then show that when 

restatements occur, the restated numbers are significantly closer to Benford’s Law relative to the 

misstated numbers.  

Lastly, we provide evidence on whether market participants can impound the possibility of 

errors in financial statements into prices in a timely manner. Our evidence shows that the market 

punishes firms for erroneous financial reporting, regardless of whether the announcement contains 

good or bad news. We find that the market response is concentrated in the days around the 

earnings announcement and the 10-K release date.  However, the short-window market response 

does not persist in longer windows. These results support the argument that the market is efficient 

in detecting observable errors. 

To our knowledge, this paper is the first to document whether firms’ annual financial 

reports conform to Benford’s Law, how firms’ reports are likely to exhibit divergence, and the 

implications for those firms that diverge.  In today’s environment of increasingly electronic, 

machine-readable disclosures where information overload has become the norm, our paper 

provides the investment community (investors, regulators, auditors, and researchers) with an 

easily implementable, parsimonious approach for assessing errors in financial reports.  
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APPENDIX A: How to calculate conformity to Benford’s Law, an example 

       
Assets Liabilities   
Cash 1,364 Accounts payable 1,005
Accounts receivable 931 Short-term loans 780
Inventory 2,054 Income taxes payable 31
Prepaid expenses 1,200 Accrued salaries and wages 37
Short-term investments 38 Unearned revenue 405

Total short-term assets 5,587
Current portion of long-
term debt 297

  Total short-term liabilities 2,555
Long-term investments 1,674   
Property, plant, and 
equipment 4,355 Long-term debt 6,507
(Less accumulated 
depreciation) 2,215 Deferred income tax 189
Intangible assets 608 Other 587
Other 84   
  Total liabilities 9,838
Total assets 14,523   
  Equity   
  Owner's investment 1,118
  Retained earnings 2,732
  Other 835
    
  Total equity 4,685
      Total liabilities and equity 14,523

 
 
Above is a sample balance sheet. To test its conformity to Benford’s Law, take the first digit of 
each number (in bold), and calculate the frequency of the occurrence of each digit. In this case, 
there are 28 total numbers and eight appearances of the number 1, so 1’s frequency is 8/28=.2857.  
 
Next, compare the empirical distribution to Benford’s theoretical distribution: 

 

 
  

Digit 1 2 3 4 5 6 7 8 9
Total occurences 8 5 3 3 2 2 1 2 2
Empirical Distribution 0.2857 0.1786 0.1071 0.1071 0.0714 0.0714 0.0357 0.0714 0.0714
Theoretical Distribution 0.3010 0.1761 0.1249 0.0969 0.0792 0.0669 0.0580 0.0512 0.0458
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The Mean Absolute Deviation (MAD) statistic and the Kolmogorov-Smirnov (KS) statistic 
can be computed to test the conformity of the empirical distribution to Benford’s distribution. 
 
1.) The KS statistic is calculated as follows: 
 
KS=Max(|AD1-ED1|, |(AD1+AD2)-(ED1+ED2)|, …, |(AD1+AD2+…+AD9)-(ED1+ED2+…+ED9)| 
 
where AD (actual digit) is the empirical frequency of the number and ED (expected digit) is the 
theoretical frequency expected by Benford’s distribution. 
 
In this example, 
 
Max(|0.2857-0.3010|, |(0.2857+0.1786)-(0.3010+0.1761)|, …, 
(|(0.2857+0.1786+0.1071+0.1071+0.0714+0.0714+0.0357+0.0714+0.0714)-
(0.3010+0.1761+0.1249+0.0969+0.0792+0.0669+0.0580+0.0512+0.0458)|)=0.0459 
 
To test conformity to Benford’s distribution at the 5% level based on the KS statistic, the test 
value is calculated as 1.36/√P, where P is the total number, or pool, of first digits used. The test 
value for the sample balance sheet is 1.36/√28=0.2570. Since the calculated KS statistic of 0.0459 
is less than the test value, we cannot reject the null hypothesis that the empirical distribution 
follows Benford’s theoretical distribution. 
 
 
2.) The MAD statistic is calculated as follows: 
 
MAD=(∑i=1

K|AD-ED|)/K, where K is the number of leading digits being analyzed. 
 
In this example, 
(|0.2857-0.3010|+|0.1786-0.1761|+|0.1071-0.1249|+|0.1071-0.0969|+|0.0714-0.0792+|0.0714-
0.0669|+|0.0357-0.0580|+|0.0714-0.0580|+|0.0714-0.0458|)/9=0.0140.  
 
Since the denominator in MAD is K, this statistic is insensitive to scale (the pool of digits used, or 
P). This statistic becomes more useful as the total pool of first digits increases, while the KS 
statistic become more sensitive as P increases. 
 
Note that there are no determined critical values to test the distribution using MAD. 
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APPENDIX B  
 
Numerical example when realizations are observable  
 

To see the intuition for why deviations from Benford’s Law can be used to assess data 

quality, consider the following example. The market value of equity at the end of a trading day is 

one realization of a random distribution. A sample of different firms in a random day is likely to 

fit the criteria in Hill (1995).  Indeed, consistent with Hill (1996), when examining a random 

sample of the market value of equity of companies traded in the United States, the distribution 

follows Benford’s Law. Now assume that instead of measuring the market value of equity 

accurately by transaction price (where we can observe true realizations), the actual realizations 

are unknown. Therefore, the data provider has to use estimation techniques (for example, using 

last year’s prices times the average return from two years ago, or just randomly choosing based 

on a possible distribution of prices). Errors in the estimation techniques or fabricated data 

(random or human) are likely to create a very different dataset from the true realized distribution 

and hence create a deviation from Benford’s Law.20 Therefore, the deviation from Benford’s 

Law can be used as a proxy for how divergent a dataset is from the true, unobservable 

realizations. If the realization is known and can be measured with complete accuracy, then there 

is obviously no need to use Benford’s Law to validate the data.  However, in this case, since the 

realizations are known, we can observe the actual deviation from the true distribution.  Below, 

we illustrate this with real data. 

  

We look at the market value of equity (MVE) for all firms with available data in CRSP’s 

monthly file (price and shares outstanding) for a random day, August 31, 2011, to build intuition 

for why Benford’s Law can be used to assess data quality. MVE (price * shares outstanding) is a 

random distribution, and as expected, the FSD Score for MVE for all firms (created using the 

distribution of the first digits of all firms with available data) is 0.00295, which can be 

considered close conformity to Benford’s Law. 

  

                                                            
20 Not all misestimated or fabricated data create deviations from Benford’s Law. For example, if the mis-estimation 
simply multiplies all true realizations by a constant, the new erroneous data will still follow Benford’s Law.  
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Next, we ask, what if the true market price is unknown, and instead, MVE needs to be 

estimated or is fabricated? To answer this question, we introduce a noise term that changes 

MVE, where firm-level MVE is equal to MVE * (1 + a randomly generated number from a 

normal distribution) and then re-measure the FSD Score. We manipulate the mean of the random 

number (i.e., the estimation error) first, with the expectation that, as the size of the noise 

increases, deviation from Benford’s Law should also increase. We next keep the mean consistent 

and manipulate the variance, expecting the FSD Score to remain constant since we are no longer 

changing the magnitude of the noise. 

  

As can be seen below, holding the variance constant, when we increase the mean noise 

term, the FSD Score increases. 

 

Constant Variance 
MVE FSD 

Score 
mean = 1, var =1 0.00294 
mean = 2, var =1 0.00304 
mean = 3, var =1 0.00320 
mean = 4, var =1 0.00322 

   
  

In contrast, holding the mean noise term constant, when we increase the variance, the 

FSD Score remains stable. 

 
Constant Mean MVE FSD 

mean = 1, var = 2 0.00292 
mean = 1, var = 3 0.00293 
mean = 1, var = 4 0.00292 

 
  

These results provide insights into why Benford’s Law and the FSD Score can be used to 

assess the quality of data in financial statements. Financial statement numbers require significant 

estimation on the behalf of management. Investors (and even possibly managers) do not observe 

the true realization of these numbers. Much like changing the mean around the noise term in the 

MVE example, as estimation error increases in estimating financial statement numbers, we 

expect the FSD Score to increase as well. 
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APPENDIX C:  Simulation analysis 

 
To demonstrate how a firm’s potential manipulation of its financial results could alter its 
conformity to Benford’s Law, we ran a simulation that involved changing the value of a single 
line item in a firm’s income statement and calculated how that change affected the financial 
statements overall. We then re-measured the FSD Score based on the manipulation and the 
changes the manipulation induced in the financial statements. 
 
We chose to manipulate sales since it is an item that managers may be tempted to change to 
mask poor performance and is interconnected with many other financial statement items. As a 
result of the sales manipulation, a firm likely needs to adjust cost of goods sold and tax expense 
accordingly. Our simulation randomly (from a uniform distribution) increased sales by between 
5% and 50% to make the change material. COGS were increased by between 20% and 90% of 
the manipulated sales, and taxes payable were increased by between 0% and 35% of the 
difference between the previous two calculations. Put more simply, we added three journal 
entries to the original numbers: 
 

1. Increase Accounts receivables   Increase Revenue 
2. Increase Cost of goods sold   decrease Inventory  
3. Increase Tax expense    Increase Tax Payable  

 
As a result of the journal entries, we list below the line items that changed in our simulation 
when sales changed as described above. 
 
 
Income statement 
Sales 
Cost of Goods Sold 
Gross Profit (Loss) 
Operating Income After Depreciation 
Operating Income Before Depreciation 
Pretax Income 
Pretax Income – Domestic 
Income Taxes – Federal 
Income Taxes – Total 
Income Before Extraordinary Items 
Income Before Extraordinary Items - Adjusted for Common Stock Equivalents 
Income Before Extraordinary Items - Available for Common 
Income before Extraordinary Items and Noncontrolling Interests 
Net Income Adjusted for Common/Ordinary Stock (Capital) Equivalents 
 
Balance sheet 
Receivables – Trade 
Receivables – Total 
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Inventories – Finished Goods 
Inventories – Total 
Current Assets – Total 
Assets – Total 
Income Taxes Payable 
Current Liabilities – Total 
Liabilities – Total 
Retained Earnings 
Stockholders Equity – Total 
Liabilities and Stockholders Equity – Total 
 
Statement of Cash Flow 
Income Before Extraordinary Items (Cash Flow) 
Accounts Receivable - Decrease(Increase) 
Inventory - Decrease (Increase) 
Income Taxes - Accrued- Increase/(Decrease) 
 
In our simulation, we chose to manipulate a firm with a set of financial numbers that generally, 
but not perfectly, conforms to Benford’s Law.  We therefore chose Alcoa’s 2011 financial results 
since the results not only conform to Benford’s Law, but also contain a large number of line 
items, ensuring that a single number does not have an undue impact on our measurements.  In 
running the simulation 1,000 times, Alcoa’s FSD Score increases 870 times (87%). We interpret 
the findings from our simulation to imply that divergence from Benford’s Law could signal that 
a firm is intentionally manipulating its financial numbers. 
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APPENDIX D: Variable definitions 

 
VARIABLE DESCRIPTION DEFINITION 
FSD_Score based on the MAD 
statistic 

Mean absolute deviation 
statistic for annual 
financial statement data 

The sum of the absolute difference between the empirical 
distribution of leading digits in annual financial statements and 
their theoretical Benford distribution, divided by the number of 
leading digits. See Appendix A for a sample calculation of 
MAD.  

FSD_Score based on the KS 
statistic 

Kolmogorov-Smirnov 
statistic for annual 
financial statement data 

The maximum deviation of the cumulative differences between 
the empirical distribution of leading digits in annual financial 
statements and their theoretical Benford distribution. See 
Appendix A for a sample calculation of  KS. 

ABN_RET_EARN Short-window abnormal 
return after the release date 
of a firm’s annual earnings 

The 10-day market-adjusted abnormal return is measured from 
the release date of a firm’s annual earnings to 10 days after the 
release. Release dates are taken from Compustat. Returns 
information is retrieved from CRSP. 

ABN_RET_10K Short-window abnormal 
return after the release date 
of a firm’s 10-K  

The 10-day market-adjusted abnormal return is measured from 
the release date of a firm’s 10-K to 10 days after the release. 
Release dates are taken from Compustat. Returns information 
is retrieved from CRSP. 

ABN_RET_LONG Long-window abnormal 
return after the release date 
of a firm’s 10-K  

The market-adjusted abnormal return from 11 days after the 
release date of a firm’s 10-K to 90 days after the release date.  
Release dates are taken from Compustat. Returns information 
is retrieved from CRSP. 

UE Unexpected earnings Analyst earnings per share forecast errors proxy for earnings 
surprise and are taken from the IBES Details file. Forecast 
errors are calculated as actual earnings per share minus the 
mean of the last forecast of the period for every analyst 
reported by IBES, scaled by price. 

ABS_JONES_RESID Absolute value of the 
residual from the modified 
Jones model, following 
Kothari et al. (2005) 

The following regression is estimated for each industry year: 
tca = ∆sales + net PPE + ROA, where tca =  (∆current assets - 
∆cash - ∆current liabilities + ∆ debt in current liabilities – 
depreciation and amortization), ROA is defined as below, and 
all variables are scaled by beginning-of-period total assets. 

STD_DD_RESID Five-year moving standard 
deviation of the Dechow-
Dichev residual, following 
Francis et al. (2005) 

The following regression is estimated for each industry year: 
tca = cfot-1 + cfo + cfot+1, where tca is defined as above, and 
cfo = (interest before extraordinary items - (wcacc - 
depreciation and amortization)). All variables are scaled by 
average total assets. The five-year rolling standard deviations 
of the residuals are then calculated. 

INDUSTRY Industry classification Groups companies into 17 industry portfolios based on the 
Fama-French. 

MANIPULATOR Indicator variable equal to 
1 if the M Score is greater 
than -1.78 

M Score is calculated following Beneish (1999). 
 

R_CFO Level of abnormal cash 
flows from operations 

Abnormal cash flows are measured as defined in 
Roychowdhury (2006) following Cohen et al. (2008). 

R_PROD Level of abnormal 
production costs 

Abnormal production costs are measured as defined in 
Roychowdhury (2006) following Cohen et al. (2008). 
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R_DISX Level of abnormal 
discretionary expenses 

Abnormal discretionary expenses are measured as defined in 
Roychowdhury (2006) following Cohen et al. (2008). 

RESTATED_NUMS Indicator variable that 
equals 1 if reported 
numbers are restated 

For all firms from 2001-2011 with at least 10 restated 
variables, where RESTATED=1 and both restated and original 
financial numbers are available in Compustat (datafmt=STD 
for original and datafmt=SUMM_STD for restated), we 
separate the original from the restated financial numbers and 
create an indicator equaling 1 for restated numbers. 

WCACC Working capital accruals Calculated as (∆current assets - ∆cash - ∆current liabilities + ∆ 
debt in current liabilities) scaled by average total assets. 

CHCSALE Change in cash sales Cash sales t - cash sales t-1/cash sales t-1, where cash sales = total 
revenue - ∆total receivables. 

SOFTAT Soft assets (Total assets - net PPE - cash)/total assets t-1. 
ISSUANCE Indicator variable that 

equals 1 if the company 
issued debt or equity in 
that year 

When long-term debt issuance (Compustat DLTIS) > 1 or sale 
of common or preferred stock (SSTK) > 1, then issuance = 1. 

BTM Book-to-market Total stock holders’ equity (Compustat SEQ)/(closing price at 
the end of the fiscal year (Compustat PRCC_F) * common 
shares outstanding (Compustat CSHO). 

AT Total assets Compustat AT. 
ROA Return on assets Income before extraordinary items t/total assets t-1. 
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APPENDIX E 

Figure 13: Aggregate Distribution and Benford’s Distribution 

 

 
 

Figure 13 shows the similarity between Benford’s distribution and the aggregate distribution of all financial 
statement variables available on Compustat for the period 2001-2011. Not shown are distributions by industry and 
year, which similarly conform to Benford’s Law. 
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Figure 14: Conformity to Benford’s Distribution, Firm Examples 
 

 

Figure 14 shows the conformity to Benford’s distribution for two firm years, Sprint Nextel, 2001, which does not 
conform to Benford’s Law (FSD Scored based on the KS statistic = 0.224, FSD Score based on the MAD statistic = 
0.052) and restated its financial results for that year, and AT&T, 2003, which does conform to Benford’s Law (FSD 
Scored based on the KS statistic = 0.028, FSD Score based on the MAD statistic = 0.013). 
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Table 1  
Descriptive Statistics 

 
VARIABLE   N MEAN SD P25 P50 P75

FSD_Score     46,574 0.030 0.009 0.024 0.029 0.036
ABN_RET_EARN (%)   39,896 0.002 0.154 -0.068 -0.001 0.065
ABN_RET_10K (%)   35,240 0.030 0.133 -0.051 -0.002 0.047
ABN_RET_LONG (%)   35,168 0.302 0.398 -0.176 0.002 0.169
UE   30,380 -0.035 0.219 -0.005 0.000 0.003
ABS_JONES_RESID   46,574 0.191 0.374 0.029 0.073 0.181
STD_DD_RESID   46,574 0.131 0.166 0.039 0.083 0.162
MANIPULATOR 42914 0.148 0.355 0 0 0
R_CFO 46008 -0.102 4.066 -0.227 0.036 0.305
R_PROD 45599 -0.034 0.380 -0.173 -0.039 0.081
R_DISX 41705 0.401 2.550 -0.194 0.010 0.272
WCACC    46,574 0.004 0.139 -0.036 0.003 0.045
CHCSALE    46,574 0.164 0.685 -0.052 0.072 0.222
ISSUANCE    46,574 0.905 0.293 1.000 1.000 1.000
BTM    46,574 0.531 1.192 0.253 0.479 0.812
AT ($M)    46,574         3,049         7,608         67         327          1,692 
ROA  46,574 -0.223 13.376 -0.067 0.028 0.081

 
FSD_Score is the mean absolute deviation between the empirical distribution of leading digits contained in a firm’s 
financial statements and Benford’s Law. See Appendix A for the calculation of FSD_Score. ABN_RET_EARN is the 10-
day abnormal return around the release date of a firm’s earnings. ABN_RET_10K is the 10-day abnormal return around 
the release date of a firm’s 10-K. ABN_RET_LONG is the abnormal return from 11 days after the release date of a firm’s 
10-K to 90 days after the release date. UE is unexpected earnings, proxied for by mean analyst forecast error. 
ABS_JONES_RESID is the absolute value of the residual from the modified Jones model. STD_DD_RESID is the five-
year moving standard deviation of the Dechow-Dichev residual. MANIPULATOR is an indicator variable equal to 1 if the 
M Score is greater than -1.78 (Beneish, 1999). R_CFO is the level of abnormal cash flows from operations. R_PROD is 
the level of abnormal production costs. R_DISX is the level of abnormal discretionary expenses. See Appendix D for 
further detail. WCACC is working capital accruals. CHCSALE is the change in cash sales. SOFTAT is total assets 
less net PPE and cash, scaled by beginning of period total assets. BTM is the book-to-market ratio. AT is total 
assets. ROA is return on assets. See Appendix D for further details.  
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Table 2 
Correlations 

 

 
 
Pearson (Spearman) correlations are below (above) the diagonal. * indicates significance at the 5% level. All variables are defined in Appendix D.

FSD_Score ABN_RET_EARN ABN_RET_10K ABN_RET_LONG UE ABS_JONES_RESID STD_DD_RESID MANIPULATOR

FSD_Score -0.0325* -0.0238* -0.0007 -0.0148* 0.0793* 0.1083* 0.0521*
ABN_RET_EARN -0.0248* 0.2914* 0.0715* 0.1097* -0.0346* -0.0375* -0.0560*
ABN_RET_10K -0.0206* 0.5066* 0.1249* 0.0043 -0.0325* -0.0130* -0.0364*
ABN_RET_LONG -0.0044 0.0858* 0.1038* -0.0756* 0.0018 0.0174* -0.0454*
UE -0.0218* 0.0145* -0.0111 -0.0915* -0.0110 -0.0115 0.0203*
ABS_JONES_RESID 0.0726* -0.0187* -0.0372* -0.0198* -0.0254* 0.3998* 0.1083*
STD_DD_RESID 0.1486* -0.0343* -0.0122* 0.0082 -0.0574* 0.2708* 0.0784*
MANIPULATOR 0.0638* -0.0353* -0.0294* -0.0444* -0.0038 0.0749* 0.1318*
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Table 3 
Aggregate Conformity to Benford’s Distribution: All Firm Years 

 
 
Panel A: All financial statement numbers 
 

NUMBER OF 
FIRM YEARS FSD_ Score 

46,574 0.0014 
 

 
Panel B:  
All financial statement numbers by industry 
 

   
Panel C: All financial statement numbers by fiscal 
year 
 

INDUSTRY 
NUMBER OF 
FIRM YEARS 

FSD_Score 
FISCAL 
YEAR 

NUMBER OF 
FIRMS 

FSD_Score 

Food 1,463 0.0015 2001 4,788 0.0013 
Mining 751 0.0019 2002 4,674 0.0016 
Oil 2,116 0.0010 2003 4,472 0.0019 
Clothes 900 0.0018 2004 4,416 0.0015 
Durables 1,225 0.0011 2005 4,348 0.0017 
Chemicals 1,103 0.0018 2006 4,196 0.0014 
Consumer goods 2,108 0.0016 2007 4,093 0.0012 
Construction 1,236 0.0017 2008 3,942 0.0012 
Steel 756 0.0016 2009 3,865 0.0014 
Fabricated products 367 0.0015 2010 3,751 0.0014 
Machinery 7,500 0.0014 2011 3,638 0.0013 

Cars 749 0.0011 
Transportation 2,088 0.0023 
Utilities 1,331 0.0018 
Retail 2,953 0.0024 
Others 19,573 0.0015 

 
Table 3 computes the aggregate FSD_Score from all financial statement variables available on Compustat for the period 
2001-2011. See Appendix A for the calculation of FSD_Score. Panel A shows the distribution for the entire sample. 
Panel B calculates the distributions by Fama-French industry portfolios. Panel C calculates the distribution by fiscal 
years. In all instances, the FSD Score is well below 0.006, which can be considered close conformity to the law 
(Nigrini, 2012). 
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Table 4 
Conformity to Benford’s Distribution: By Individual Firm Year 

 
 
Panel A: Total number of firm-years that follow Benford’s distribution 
 

NUMBER PERCENT
38,983 83.70 

 

 
 
Panel B: Total number of firm-years by industry 
that follow Benford’s distribution 
 

Panel C: Total number of firm-years by year 
that follow Benford’s distribution 
 

INDUSTRY NUMBER PERCENT FIRM YEAR NUMBER PERCENT 
Food 1,251 84.99 2001 4,081 84.41 
Mining 613 81.08 2002 4,004 84.92 
Oil 1,842 85.71 2003 3,769 83.57 
Clothes 767 84.85 2004 3,706 83.39 
Durables 1,007 82.54 2005 3,720 84.93 
Chemicals 941 84.93 2006 3,530 83.43 
Consumer goods 1,689 78.85 2007 3,485 84.36 
Construction 1,008 87.11 2008 3,343 84.06 
Steel 651 85.66 2009 3,205 82.10 
Fabricated products 316 86.10 2010 3,115 82.26 
Machinery 6,281 83.34 2011 3,025 82.65 
Cars 646 85.79 
Transportation 1,778 84.55 
Utilities 1,200 88.89 
Retail 2,448 83.12 
Others 16,465 83.33 

 
Table 4 computes FSD_Score based on the KS statistic for each firm-year from 2001-2011 and shows the percentage of 
individual firm-years that conform to Benford’s Law, where conformity is assessed as having a KS statistic that is not 
significantly different from zero at the 5% level. In Panel A, 84% of all firm-years are not different from zero at the 5% 
level. Panel B (Panel C) shows similar conformity to Benford’s Law across industries (years). See Appendix A for the 
calculation of FSD_Score based on the KS statistic.  



  57   
 

Table 5 
Benford’s Distribution and Accounting Discretion 

 
FSD_Scorei,t = α + β1ABS_JONES_RESIDi,t + β2STD_DD_RESIDi,t + β3MANIPULATORi,t + 

β4R_CFOi,t + β5R_PRODi,t + β6R_DISXi,t + εi,t 
 

VARIABLES FSD_Score
(1) 

    
ABS_JONES_RESID 0.001** 

(2.10) 
STD_DD_RESID 0.006*** 

(11.59) 
MANIPULATOR 0.001*** 

(6.79) 
R_CFO -0.000 

(-0.26) 
R_PROD -0.000 

(-1.22) 
R_DISX 0.000 

(1.48) 

Observations 36,789 
R-squared 0.019 

 
Table 5 examines the relation between Benford’s Law and proxies for accruals-based earnings management, earnings 
manipulation, and real activities earnings management. The OLS regressions use all financial statement data for the 
period 2001-2011. FSD_Score is the mean absolute deviation between the empirical distribution of leading digits 
contained in a firm’s financial statements and Benford’s Law. See Appendix A for the calculation of FSD_Score.  
ABS_JONES_RESID is the absolute value of the residual from the modified Jones model. STD_DD_RESID is the five-
year moving standard deviation of the Dechow-Dichev residual.  MANIPULATOR is an indicator variable equal to 1 if 
the M Score is greater than -1.78 (Beneish, 1999). R_CFO is the level of abnormal cash flows from operations. 
R_PROD is the level of abnormal production costs. R_DISX is the level of abnormal discretionary expenses. See 
Appendix D for definitions of the control variables. t-statistics are reported in parentheses in the table. *, **, and *** 
indicate significance at the 0.10, 0.05, and 0.01 levels, respectively. 
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Table 6 
FSD Score of Firms Just Above and Below zero Net Income 

 
 

  
Number of 

Observations 
FSD 
Score 

Difference 
(%) t-statistic 

-0.005<=NI<0 460 0.0285 4.56 2.3878*** 
0<=NI<=0.005 635 0.0298     

 
Table 6 examines mean FSD Scores for firms just above and below 0 net income.  Following Burgstahler and Dichev 
(1997), net income is scaled by the beginning-of-period market value of equity. FSD_Score is the mean absolute 
deviation between the empirical distribution of leading digits contained in a firm’s financial statements and Benford’s 
Law. See Appendix A for the calculation of FSD_Score. See Appendix D for definitions of the control variables. t-
statistics are reported in parentheses in the table. *, **, and *** indicate significance at the 0.10, 0.05, and 0.01 levels, 
respectively. 
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Table 7 
Misstated Versus Restated Financial Statements 

 
FSD_Scorei,t = α + β1RESTATED_NUMSi,t + β2ABS_JONES_RESIDi,t + β3STD_DD_RESIDi,t + 

β4MANIPULATORi,t + β5R_CFOi,t + β6R_PRODi,t + β7R_DISXi,t + εi,t 
 

VARIABLES FSD_Score FSD_Score 
(1) (2) 

      
RESTATED_NUMS -0.001* -0.001*** 

(-5.63) (-5.68) 
ABS_JONES_RESID 0.000 

(0.70) 
STD_DD_RESID 0.006*** 

(11.76) 
MANIPULATOR 0.001*** 

(2.72) 
R_CFO -0.000 

(-1.07) 
R_PROD -0.000 

(-1.46) 
R_DISX 0.000** 

(2.31) 

Observations 11,228 11,228 
R-squared 0.003 0.019 

 
Table 7 examines the relation between Benford’s Law and restated data. The OLS regressions use financial statement 
data from firms that restated their financial statements for the period 2001-2011.  We require that firms have both 
restated and original financial data available in Compustat and that at least 10 variables were changed in the restated 
numbers. RESTATED_NUMS is an indicator that equals 1 for restated numbers and 0 for misstated numbers used in 
the calculation of FSD_Score. FSD_Score is the mean absolute deviation between the empirical distribution of leading 
digits contained in a firm’s financial statements and Benford’s Law. See Appendix A for the calculation of FSD_Score. 
ABS_JONES_RESID is the absolute value of the residual from the modified Jones model. STD_DD_RESID is the five-
year moving standard deviation of the Dechow-Dichev residual.  MANIPULATOR is an indicator variable equal to 1 if 
the M Score is greater than -1.78 (Beneish, 1999). R_CFO is the level of abnormal cash flows from operations. 
R_PROD is the level of abnormal production costs. R_DISX is the level of abnormal discretionary expenses.  See 
Appendix D for definitions of the control variables.  t-statistics are reported in parentheses in the table. *, **, and *** 
indicate significance at the 0.10, 0.05, and 0.01 levels, respectively.  
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Table 8 

FSD Score and Stock Market Returns 
 
Panel A: 10-day abnormal returns by quintile around the earnings release date 
 

Quintiles by 
FSD_Score N ABN_RET_EARN  

Standard 
Deviation t-statistic 

1 7,982 0.3345 0.1426 2.10** 
5 7,976 -0.6161 0.1680 -3.28*** 

Difference 
between 1 and 5   0.9506   3.85*** 

 
Panel B: 10-day abnormal returns around the earnings release date sorted by change in earnings 
surprise and FSD Score 
 

    Quintiles by FSD_Score     

  1 5 
Difference between FSD  

Quintiles 1 and 5 (%) t-statistic
Quintiles by UE 1 -0.5284 -1.8220 1.2935 1.68* 
  5 1.8254 0.5559 1.2695 2.04** 

 
Panel C: 10-day abnormal returns by quintile around the 10-K release date 
 

Quintiles by 
FSD_Score N ABN_RET_10K 

Standard 
Deviation t-statistic 

1 7,052 0.1904 0.1226 1.30 
5 7,041 -0.4869 0.1397 -2.92*** 

Difference 
between 1 and 5   0.6773   3.06*** 

 
Panel D: Long-window abnormal returns by quintile from 10 days after 10-K release date to 90 
days after the 10-K release date 
 

Quintiles by 
FSD_Score N ABN_RET_LONG 

Standard 
Deviation t-statistic 

1 7,039 0.2696 0.3474 0.65 
5 7,029 -0.2642 0.4305 -0.51 

Difference 
between 1 and 5   0.5338   0.81 
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Panel E: Multivariate regressions 
 

ABN_RET_EARNi,t = α + β1FSD_Scorei,t + β2UEi,t + β3ABS_JONES_RESIDi,t + 
β4STD_DD_RESIDi,t + β5MANIPULATORi,t + β6R_CFOi,t + β7R_PRODi,t + β8R_DISXi,t + 
β9WCACCi,t + β10CHCSALEi,t + β11R_SOFTATi,t + β12ISSUANCEi,t + β13BTMi,t + β14ATi,t + 

β15ROAi,t + εi,t 
 

VARIABLES ABN_RET_EARN ABN_RET_EARN 
  (1) (2) 
FSD_Score -0.412*** -0.286*** 

(-3.89) (-2.65) 
UE 0.011*** 

(2.63) 
ABS_JONES_RESID -0.004 

(-1.55) 
STD_DD_RESID -0.014* 

(-1.83) 
MANIPULATOR -0.016*** 

(-5.68) 
R_CFO -0.000 

(-0.81) 
R_PROD 0.002 

(0.72) 
R_DISX 0.000 

(1.27) 
WCACC -0.000 

(-0.63) 
CHCSALE -0.008*** 

(-4.33) 
SOFTAT -0.002 

(-0.83) 
ISSUANCE -0.002 

(-0.34) 
BTM 0.018*** 

(12.21) 
AT 0.000 

(0.21) 
ROA 0.021*** 

(5.47) 

Observations 24,434 24,434 
R-squared 0.001 0.013 
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Table 8 examines the relation between firms’ level of conformity to Benford’s Law and equity market returns. Portfolio 
returns are based on the Fama-Macbeth method, i.e., we construct portfolios every year and report the mean of these 
portfolios.  Panel A divides firm-years into quintiles based on their FSD Score with the lowest (highest) quintile having 
the strongest (weakest) conformity to the Law. ABN_RET_EARN is the 10-day abnormal return around the release date of 
a firm’s earnings.  Panels B uses the same 10-day return windows and first sorts on mean analyst forecast error scaled by 
stock price (UE) then based on the FSD Score. Panel C divides firm-years into quintiles based on their FSD Score with 
the lowest (highest) quintile having the strongest (weakest) conformity to the Law. ABN_RET_10K is the 10-day 
abnormal return around the release date of a firm’s 10-K. Panel D divides firm-years into quintiles based on their FSD 
Score with the lowest (highest) quintile having the strongest (weakest) conformity to the Law. ABN_RET_LONG is the 
abnormal return from 11 days after the release date of a firm’s 10-K to 90 days after the release date. Panel E conducts 
multivariate analysis of the relation between FSD Score and abnormal returns. ABN_RET_EARN, the 10-day abnormal 
return measured from the date of the earnings release to 10 days after the release, is the dependent variable. 
ABS_JONES_RESID is the absolute value of the residual from the modified Jones model. STD_DD_RESID is the five-
year moving standard deviation of the Dechow-Dichev residual.  MANIPULATOR is an indicator variable equal to 1 if 
the M Score is greater than -1.78 (Beneish, 1999). R_CFO is the level of abnormal cash flows from operations. 
R_PROD is the level of abnormal production costs. R_DISX is the level of abnormal discretionary expenses. See 
Appendix D for definitions of the control variables.  t-statistics are reported in parentheses in the table. *, **, and *** 
indicate significance at the 0.10, 0.05, and 0.01 levels, respectively. 


